Helicobacter pylori infection interferes with epithelial Stat6-mediated interleukin-4 signal transduction independent of cagA, cagE, or VacA.
نویسندگان
چکیده
Helicobacter pylori is a bacterial pathogen evolved to chronically colonize the gastric epithelium, evade immune clearance by the host, and cause gastritis, peptic ulcers, and even gastric malignancies in some infected humans. In view of the known ability of this bacterium to manipulate gastric epithelial cell signal transduction cascades, we determined the effects of H. pylori infection on epithelial IL-4-Stat6 signal transduction. HEp-2 and MKN45 epithelial cells were infected with H. pylori strains LC11 or 8823 (type 1; cagA(+)/cagE(+)/VacA(+)), LC20 (type 2; cagA(-), cagE(-), VacA(-)), and cagA, cagE, and vacA isogenic mutants of strain 8823, with some cells receiving subsequent treatment with the Th2 cytokine IL-4, a known Stat6 activator. Immunofluorescence showed a disruption of Stat6-induced nuclear translocation by IL-4 in LC11-infected HEp-2 cells. IL-4-inducible Stat6 DNA binding in HEp-2 and MKN45 cells was abrogated by infection, but MKN45 cell viability was unaffected. A decrease in IL-4-mediated Stat6 tyrosine phosphorylation in nuclear and whole cell lysates was also observed following infection with strains LC11 and LC20, while neither strain altered IL-4 receptor chain alpha or Janus kinase 1 protein expression. Furthermore, parental strain 8823 and its isogenic cagA, cagE, and vacA mutants also suppressed IL-4-induced Stat6 tyrosine phosphorylation to comparable degrees. Thus, H. pylori did not directly activate Stat6, but blocked the IL-4-induced activation of epithelial Stat6. This may represent an evolutionarily conserved strategy to disrupt a Th2 response and evade the host immune system, allowing for successful chronic infection.
منابع مشابه
Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells.
Infection with Helicobacter pylori cagA-positive strains is associated with gastritis, ulcerations, and gastric cancer. CagA is translocated into infected epithelial cells by a type IV secretion system and can be tyrosine phosphorylated, inducing signal transduction and motogenic responses in epithelial cells. Cellular cholesterol, a vital component of the membrane, contributes to membrane dyna...
متن کاملHelicobacter pylori CagA inhibits endocytosis of cytotoxin VacA in host cells.
Helicobacter pylori, a common pathogen that causes chronic gastritis and cancer, has evolved to establish persistent infections in the human stomach. Epidemiological evidence suggests that H. pylori with both highly active vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA), the major virulence factors, has an advantage in adapting to the host environment. However, the mechani...
متن کاملHelicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression.
The mechanisms involved in mediating the enhanced gastric epithelial cell apoptosis observed during infection with Helicobacter pylori in vivo are unknown. To determine whether H. pylori directly induces apoptosis of gastric epithelial cells in vitro and to define the role of the Fas-Fas ligand signal transduction cascade, human gastric epithelial cells were infected with H. pylori for up to 72...
متن کاملHelicobacter pylori induces apoptosis of rat gastric parietal cells.
Gastric Helicobacter pylori infection may lead to multifocal atrophic corpus gastritis associated with loss of epithelial cells as well as glandular structures. The current work investigated H. pylori effects on cell death of isolated, nontransformed rat parietal cells (PC). Highly enriched rat PC (>97%) were isolated from gastric mucosa and cultured in serum-free medium over 24 h. The cells we...
متن کاملRole of autophagy associated with Helicobacter pylori CagA and VacA toxins in gastric cancer
Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that has been introduced as a cause of mucosal inflammation and gastric cancer. The most important pathogenic factors are VacA and CagA, which are associated with increased disease severity in clinical strains. Autophagy is a protected lysosomal degradation pathway degrading cytoplasmic content and is important in host...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 171 4 شماره
صفحات -
تاریخ انتشار 2003